
CAPSTONE PROJECT PAPER, DECEMBER 2016 1

Real Time Data Ingestion and Anomaly
Detection for Particle Physics

Xinyi Gong* , Lanyu Shang*, Zihao Wang*
Center for Data Science, New York University

{xg555, ls3882, zw1074}@nyu.edu

Abstract—This project is looking for a method to compress the high-dimensional data from high energy particle collisions for storage
purpose as well as decompress the record whenever necessary. The potential approach for this is the autoencoder, which can support
the online training, comparing to PCA models. The autoencoder model with a good prediction after encoding and decoding, is also
expected to detect any anomalous events that happen during the particle collision.

Index Terms—Autoencoder, anomaly detection, deep learning, online training

F

1 INTRODUCTION

IN physics, high energy particle is an important topic in
current research. The data which most physicists conduct

research on is mainly from the particle collision which
happens every minute in Large Hadron Collider (LHC).
However, every collision during high-energy physics
experiments can simultaneously create an enormous
amount of high-dimensional data. Thus, researchers want
to find feasible solutions to store and track these events in a
limited storage.

Currently, researchers track and record events by uti-
lizing particular triggers, which could only record limited
amount of data as only information that meets requirements
of the trigger can be recorded. Besides, triggers are not held
in the database in compiled form which results in recompil-
ing each time a trigger is fired. In this project, a general
method would be developed to compress and record all
data generated from collisions as well as to decompress
any records whenever needed. Under such circumstances,
autoencoder can be a potential alternative as its prevalence
in feature selection. As long as the feature selection and
the model can be improved, not only will it save time
and storage memory, but also increase the efficiency of
research activities. In addition, PCA is also good at reducing
dimensions and selecting features. The comparison between
the performance of PCA and autoencoder will also be eval-
uated.

2 DATA AND PREPOCESSING

The data in this project is collected by [1], and it is the
record of events that happened at CERN1. It runs the
world’s largest particle physics lab. In a typical experiment,
one high-energy particle shower shoots through a pipeline
against and perpendicular to the surface of high-granular
linear collider detector. The energy then spreads out due to

* Team members contributed equally to this project.
1. CERN is the abbreviation in French of the European Organization

for Nuclear Research

the collision and is detected by the calorimeters with respect
to the location. The pattern of energy will be recorded as a
high-dimensional vector.

The single-particle energy showers are produced by ei-
ther photons or neutral pions. There are two calorimeters,
which are electromagnetic calorimeter (ECAL) and hadron
calorimeter (HCAL), inside the high-granular linear collider
detector. The ECAL has 25 layers and 24 x 24 absorbers in
each layer. The HCAL locates behind the ECAL, and it is
for the detection of the most energetic hadrons. It has 60
layers, and the size of sensor cells is six times larger than
that of ECAL. Thus, there are 4 x 4 absorbers in each layer
of HCAL. Here is the table of description of every event.

TABLE 1: Description of Data

Keys Shape Description

ECAL 24×24×25 Energy detected by ECAL
HCAL 4×4×6 Energy detected by HCAL
target 1×5 Momentum, energy and nature

The events described before are recorded in a bunch of
HDF5 files. 10,000 events are packed in a file, and there
are 50 files, i.e., there are 500,000 events in total. Each file
has 3 keys with 10,000 entries(events). For each event, just
as shown in TABLE 1, the keys are labeled as “ECAL”,
“HCAL” and “target”. Each “ECAL” contains a 24x24x25
numpy array standing for the energy detected by ECAL.
Each “HCAL” records the energy deposited in HCAL by a
4x4x60 numpy array. The “target” provides the additional
information about the momentum of the incoming particle
(stored as the px, py , pz in the global coordinate system),
the energy of the incoming particle and the nature of the
incoming particle (1 for photons and 0 for neutral pions). It
makes a 1x5 numpy array for each “target”.

As the data has the spatial correlation in a 3-dimensional
space, which is similar to the image data, the suggested
preprocessing of image data are rescaling data to [0,1] and
normalization. For preprocessing the data in this project,



CAPSTONE PROJECT PAPER, DECEMBER 2016 2

events are rescaled to the [0,1] range for easier computation.
However, no normalization was applied, because all energy
values are in the same unit; otherwise, the sparsity could be
lost.

3 APPOARCHES

This project is going to deal with data generated by a
simulation. For compression, the main idea is to construct
a encoder called E(x) : Rn → Rm and a decoder called
D(x) : Rn → Rm. Here, one way to measure the effect of
compression is the compression ratio: r = m/n. Because
we often require m << n. Therefore, after encoding, some
information will be lost. To minimize the loss between the
original vector and reconstructed vector, a good compressor
will try to capture some hidden patterns so that it can
describe the original data by using these hidden patterns.
Moreover, the main method we use to approach the best
encoder is MLP autoencoder because MLP is a universal
approximator [4]. Autoencoder is a deep learning model
with artificial neural networks that studying unsupervised
learning for a generative model. It is a prevalent method
for feature selection. Here is the scratch of the autoencoder
algorithm: Y is the input and encoded to a low-dimensional
representative z. Z can be decoded to the predicted Y later.
More hidden layers can be added during both encoding
and decoding process in the artificial neural network.

Fig. 1: Autoencoder Algorithm

The input is also the target variable here. It consists of
three numpy arrays and is going to be encoded to a low-
dimensional representation. Then the representation will be
decoded to the predicted target variable later. According
to the dataset, many values are small, so some thresholds
are set for better prediction during decoding. As the ECAL
record has the highest number of dimensions, ECAL record
will be mainly focused on being compressing during train-
ing. As the data is rescaled into range [0,1] (like a probabil-
ity), cross entropy loss would be efficient for training this
type of data. Therefore, cross entropy loss will be applied
to evaluate the performance of the model. L1 regularization
is often used to control the sparsity of prediction. As the

dataset is sparse, in order to preserve the sparsity during
the training process, the L1 regularization is applied for loss
penalty. In short, the formula of loss function used in this
project is

L(X, X̂) = −ΣiXi log X̂i + λ‖f1(WeX + be)‖1.

3.1 One-layer Autoencoder

The idea of one-layer autoencoder is that the input function
is first mapped into a hidden variable via a hidden layer
with nonlinear activation function then train another hidden
layer to remap the hidden variable back to the input space.
The formula of one-layer autoencoder is

X̂ = f2(Wdf1(WeX + be) + bd),

where f1, f2 are activation function and Wd,We are the
decode matrix and encode matrix.

3.2 Deep-layer Autoencoder

Comparing to the previous one-layer autoencoder, the deep-
layer autoencoder uses more hidden layers during both
encoding and decoding process. The MLP (Multilayer Per-
ceptron) is applied to extract deep features. Let

fk(X) = relu(WkX + bk),

then the formula of deep autoencoder is

X̂ = fN ◦ fN−1 ◦ . . . ◦ f1(X).

Here f1 ◦ f2(X) = f1(f2(X)).

3.3 Convolutional Autoencoder

Convolutional autoencoder uses convolution layer to extract
features. Since our data is spatial correlated, we can use
convolution layer and max-pooling to capture the local
connections.

4 RESULTS

The compression ratio of each autoencoder discussed above
is 32:14400, that is, every 24×24×25 vector is encoded into a
vector of length 32. Fig.2 contains the visualization of orig-
inal data and the reconstructed data after decoding, from
which, the reconstructed data of one-layer autoencoder and
deep-layer kept the pattern of the original data, while that
of convolutional autoencoder seemed blur on its pattern.

TABLE 2: R2 Score of Models

Autoencoder R2 score

One-layer 0.9497
Deep-layer 0.9166

Convolutional 0.0967

Along with the visualization of reconstructed data, based
on theR2 scores shown in TABLE 2 above, one-layer autoen-
coder had the best performance on the dataset. However, the
performance on anomaly detection can also be an evaluation
scale.



CAPSTONE PROJECT PAPER, DECEMBER 2016 3

Fig. 2: Original and Reconstructed Data

5 ANOMALY PREPARATION

As one of the goals of this project is to detect the anomaly,
however, the chances that anomalous particles occur are re-
ally low. Artificial anomalous events are created and added
to the test dataset, particularly, to evaluate the ability of
models in detecting anomalies as well as analyzing errors.
Fig.3 is the visualization of these anomalies.

Fig. 3: Anomaly Preparations

Here are three types of anomalies:

• Type 1: Missing energy records
There are some parts of the records being deleted
and set to zero. It can be caused by some different
particles that can block the magnetic wave.

• Type 2: Energy records at abnormal position
There are some abnormal energy records at a position
that do not match the distribution pattern as that of
other events.

• Type 3: Ignoring small energy values
All the points with energy values are set to zero if
they are less than the threshold. The threshold will
be discussed in the later section.

6 ANOMALY DETECTION

For anomaly detection, ‖X −Xdecode‖2 (i.e. the L2 distance
between X and Xdecode) is used to examine the whether
the event contains any anomalies. If the event does not
contain any anomalies, the distance is expected to be low.
Fig.4 is the comparison of the anomaly detection of each
autoencoder. Thus, if an autoencoder is sensitive to these
anomalies, distinct differences are expected for the L2
distance of each event.

Fig. 4: Anomaly Detection on Type 1 and 2

According to Fig.4, one-layer and deep-layer autoen-
coders performed equally well on the detection of type 1
and type 2 anomalies.

7 ERROR ANALYSIS

During the training of autoencoders, there once existed a
problem, and it was after decoding, the sparsity did not
maintain. Some small-value energy points were predicted
to larger values. These points can be considered as noise.
Hence, a threshold on ReLU activation on the first layer of
autoencoder was added to eliminate these noise, so that the
sparsity of data can keep.

From the visualizations of reconstruction data (Fig. 2),
especially that of the convolutional autoencoder, it seems
the autoencoder is trying to capture the large energy points
to ensure the R2 score, then, the artificial type 3 anomaly
is used for error analysis. The threshold here is the 32nd
largest energy value. As the dimension of encoder vector
is set to be 32, in order to test whether the autoencoder
just remembers the large numbers, selecting top 32 large
values has become a good choice. It is used to test if the
autoencoder just records the larger values. Similar to the
criteria of the anomaly detection on type 1 and 2, if the



CAPSTONE PROJECT PAPER, DECEMBER 2016 4

pattern of distance between X and Xdecode of type 3 is dif-
ferent from that of original data, the autoencoder performs
well on feature extractions on all energy points. Fig. 5 is the
comparison of the anomaly detection on type 3 which also
known as the error analysis for autoencoder.

Fig. 5: Error Analysis on Type 3

The one-layer autoencoder and convolutional
autoencoder do not illustrate much difference on the
original data and type-3 data. Therefore, if these models can
preserve the larger values of energy, the loss of prediction
would not be high. These two models are not sensitive for
detecting this type of anomaly.

Fortunately, for the model with the best performance
(deep-layer autoencoder), it not only captures the obvious
features (e.g. large values) but also preserves some hidden
features. Thus, deep-layer autoencoder is more robust in
anomaly detection.

8 CONCLUSION

The implement of the autoencoder for data of high-energy
particle collision events brings mainly two benefits. The
first one is the storage can be saved as the autoencoder aims
to find a representation for the original data, by reducing
the dimension of data (length of 32 after encoding to length
of 14400 before). As the algorithm of autoencoder is similar
to the algorithm of PCA, the final representative of events
will result in a low-dimensional with some most essential
features as the result of encoding. Then, the representative
vector can be decoded to the predicted vector, which is
also known as the reconstructed vector. Another benefit of
a well-trained autoencoder is finding anomalies. The basic
idea is that if the predicted (reconstructed) vector is far
away from the real input vector, it is more likely to explore
a new pattern or event in high-energy physics.

The PCA model can perform really well on the sparse
data (with R2 score 0.9905 for the data in this project).
However, it is not recommended to be used in practice.
The first reason is that PCA cannot be trained online,
which means that every time a new training data is added

to the existing training data, the whole model needs to
be retrained. While autoencoder is an online training
method, stochastic gradient descent (SGD) is applied to
train the parameters. Another disadvantage of PCA is it
is time-consuming. So far, the deep-layer autoencoder is
preferred for anomaly detection, and one-layer autoencoder
is expected to store the real-time data for its high R2 score.

APPENDIX A
LAYERS OF AUTOENCODERS

A.1 One-layer Autoencoder

Layer Type Parameters
ThresholdedReLU θ = 0.001

Sigmoid -
Fully connected #neurons: 14400

ReLU -
Fully connected #neurons: 32

Input 14400 Dimension vector

A.2 Deep-layer Autoencoder

Layer Type Parameters
ThresholdedReLU θ = 0.001

Sigmoid -
Fully connected #neurons: 14400

ReLU -
Fully connected #neurons: 2400

ReLU -
Fully connected #neurons: 1200

ReLU -
Fully connected #neurons: 600

ReLU -
Fully connected #neurons: 128

ReLU -
Fully connected #neurons: 32

ReLU -
Fully connected #neurons: 128

ReLU -
Fully connected #neurons: 600

ReLU -
Fully connected #neurons: 1200

ReLU -
Fully connected #neurons: 2400

Input 14400 Dimension vector



CAPSTONE PROJECT PAPER, DECEMBER 2016 5

A.3 Convolutional Autoencoder

Layer Type Parameters
ThresholdedReLU θ = 0.001

Sigmoid -
Convolution3D #filters: 1, k:4× 1× 1, s:1

UpSampling k:2× 2× 2
ReLU -

Convolution3D #filters: 16, k:3× 3× 3, s:1, same border
UpSampling k:2× 2× 2

ReLU -
Convolution3D #filters: 8, k:3× 3× 3, s:1, same border

Reshape -
ReLU -

Fully connected #neurons: 2016
ReLU -

Fully connected #neurons: 32
MaxPooling3D k:2× 2× 2, s:1, same border

ReLU -
Convolution3D #filters: 8, k:3× 3× 3, s:1, same border
MaxPooling3D k:2× 2× 2, s:2, same border

ReLU -
Convolution3D #filters: 16, k:3× 3× 3, s:1, same border

Input 25× 24× 24 HCAL vector

ACKNOWLEDGMENTS

We would like to thank Professor Kyle Cranmer for supervi-
sion and guidance and Professor Cladio Silva for instruction
and efforts on the Capstone course. We also would like to
thank Maurizio Pierini and Jean-Roch Vilmant for providing
the data source.

REFERENCES

[1] J. Bendavid, K Dattaa, A. Farbin, N. Howe, J. Mahapatra, M.
Pierini, M. Spiropulu, J.R. Vlimant Imaging calorimeter data for
machine learning applications in HEP, unpublished.

[2] C. Doersch. Tutorial on variational autoencoders,2016. arXiv preprint
arXiv:1606.05908

[3] Y. LeCun. Unsupervised learning, 2016. [Online]. Available:
http://cilvr.nyu.edu/lib/exe/fetch.php?media=deeplearning:201
6:lecun-20160308-unssupervised-learning-nyu.pdf

[4] K. Hornik. Multilayer Feedforward Networks
are Universal Approximators, 1989. Available:
http://deeplearning.cs.cmu.edu/pdfs/Kornic_et_al.pdf

[5] M. Kuusela, T. Vatanen, E. Malmi, T. Raiko, T. Aaltonen and Y. Na-
gai. Semi-supervised anomaly detection – towards model-independent
searches of new physics, 2012. arXiv preprint arXiv:1112.3329

[6] K. Muandet and B. Schölkopf. One-class support measure machines
for group anomaly detection, 2013. arXiv preprint arXiv:1303.0309

[7] X. Wei. Must know tips/tricks in deep neu-
ral networks, 2015. [Online]. Available:
http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.
html. Accessed: Dec. 17, 2016.


